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Abstract
In the paper it is pointed out that ‘time asymmetry in quantum mechanics’
(TAQM) is an intrinsic element of the mathematical apparatus of quantum
mechanics for semibounded Hamiltonians H with absolutely continuous
spectrum coinciding with the positive half-line and of constant multiplicity. It is
shown that the TAQM-semigroups are unsuitable for a spectral characterization
of the resonances in terms of H.

PACS numbers: 03.65.−w, 02.30.Hq

1. Introduction

The paper is intended to contribute to ‘time asymmetry in quantum mechanics’ (TAQM) from
the mathematical point of view, based on the (essential) selfadjointness of the Hamiltonians in
quantum mechanics. For general literature on the topic TAQM we refer to [1] and references
therein (see also [2–4]).

In the paper it is pointed out that TAQM is, mathematically speaking, an intrinsic element
of the mathematical apparatus of quantum mechanics for selfadjoint Hamiltonians which are
semibounded with an absolutely continuous spectrum coinciding with the positive half-line
and of homogeneous (constant) multiplicity. It is shown that in this case the so-called TAQM-
semigroups act on the well-defined dense submanifolds of outgoing (or incoming) states of
the subspace of all scattering states. The spectral structure of these semigroups changes
totally as compared with that of the Hamiltonian. This implies that the TAQM-semigroups
cannot contribute to a spectral characterization of the resonances because their eigenvalue
spectrum coincides with the full lower (or upper) half-plane of the complex plane such that
the resonances ‘vanish’ in the ‘sea’ of all eigenvalues. Furthermore, according to a theorem of
Wollenberg [5] (see also [6]), it is not sufficient to characterize the resonances of a Hamiltonian
only by their property to be poles of the scattering matrix. This means that a characterization
in terms of the Hamiltonian itself is required.
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2. Basic assumptions and properties of the Hamiltonians

The Hamiltonians H considered are selfadjoint and semibounded operators on a Hilbert space
H with absolutely continuous spectrum R+ := [0,∞) of constant multiplicity. The projection
onto the absolutely continuous subspace of H is denoted by P ac. Since in the following only
the absolutely continuous subspace P acH is of interest, for convenience we write simply H for
P acH and H for H �P acH. We collect basic facts of the spectral theory of H: there is a spectral
representation of H. This means there is an isometric operator � from H onto L2(R+,K, dE),
where K is a Hilbert space and dimK is the multiplicity of the absolutely continuous spectrum
such that H respectively e−itH is represented on L2(R+,K, dE) by M+ respectively e−itM+ ,
where M+ denotes the multiplication operator

M+f (E) := Ef (E), f ∈ L2(R+,K, dE),

i.e. one has

�(e−itH f )(E) = e−itE(φf )(E), f ∈ H
or

� e−itH φ−1 = e−itM+ . (1)

� is not unique, however in general, for given concrete Hamiltonians there are distinguished
canonical spectral transformations �.

For example, if H is the Hamiltonian for central-symmetric potentials with compact
support and angular momentum quantum number l = 0, given on L2(R+, dr), then the
canonical spectral transformation � reads

(�f )(E) = E1/4

√
π |F(

√
E)|

∫ ∞

0
ϕ(r, E)f (r)dr, f ∈ L2(R+, dr),

where ϕ(·, E) is the regular solution of the corresponding differential equation and F(·)
denotes the Jost function. The inverse transformation �−1 is given by

(�−1g)(r) = 1√
π

∫ ∞

0
ϕ(r, E)

E1/4

|F(
√

E)|g(E) dE, g ∈ L2(R+, dE).

By H0 we denote a second, so-called ‘free’ selfadjoint Hamiltonian with the same absolutely
continuous subspace as H and we assume that {H,H0} form an asymptotically complete
scattering system. Then H and H0 are necessarily unitarily equivalent on H. For example,
these conditions are satisfied if H := H0 + V where V is a trace class operator. In general,
also H0 has a canonical spectral transformation �0. Then the operators W̃± := �W±�−1

0 ,
where W± are the unitary wave operators onH, are multiplication operators on L2(R+,K, dE),
acting by the so-called wave matrices E → W±(E), where W±(E) are unitary operators on
the multiplicity space K. Then the scattering matrix is given by S(E) = W+(E)∗W−(E).

In the following we do not use W± and S. However we recall that asymptotical
completeness means that

W+H = W−H = H.

In the physical literature usually W+H is called the subspace of out-states and W−H the
subspace of in-states. That is, asymptotic completeness means that the subspaces of in- and
out-states coincide with the absolutely continuous subspace H, the space of all scattering
states.

The starting point and the first ansatz for time asymmetry is the observation that there
are sufficiently many scattering states with distinguished time properties w.r.t. the evolution
R � t → e−itH . For the description of these states one has to point out the connection
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of the quantum-mechanical evolution with the unitary shift evolution on the Hilbert space
L2(R,K, dx). This approach requires the introduction of the Hardy spaces.

3. Hardy spaces and shift evolution

The Fourier transformation F is an isometric operator from L2(R,K, dx) onto L2(R,K, dE),
defined by

L2(R,K, dx) � f → (Ff )(E) := 1√
2π

∫ ∞

−∞
e−iExf (x) dx

on an appropriate dense set (e.g. the Schwartz space). The projections on L2(R,K, dx), acting
by multiplication with the characteristic functions χR±(·), where R− := (−∞, 0], are denoted
by P±. Then the Hardy spaces H2

±(R;K) ⊂ L2(R,K, dx) are defined by

H2
±(R,K) := FP∓L2(R,K, dx).

The projections Q± onto these (mutually orthogonal) subspaces are given by

Q± = FP∓F−1.

Note that Q+ + Q− = 11,Q−Q+ = 0. On L2(R,K, dx) the shift evolution T (·) is defined by

T (t)g(x) := g(x − t), g ∈ L2(R,K, dx).

It is well known that the subspaces P∓L2(R,K, dx) are incoming/outgoing subspaces of the
shift evolution (in the sense of Lax–Phillips [7]), i.e.

T (t)P−L2(R,K, dx) ⊆ P−L2(R,K, dx), t � 0, (2)

T (t)P+L
2(R,K, dx) ⊆ P+L

2(R,K, dx), t � 0, (3)

the intersection of all T (t)P+L
2(R,K, dx) is {0}, and their union is dense in L2(R,K, dx)

(similarly for P−). Further, the spectral representation of the shift evolution is obtained by F,
i.e.

FT (t)F−1 = e−itM, (4)

where M denotes the multiplication operator on L2(R,K, dE). Note that the projections P±
commute with the evolution t → e−itM , they are spectral projections, i.e. elements from the
spectral measure of M.

The decisive step to obtain the mentioned distinguished states in H is the application
of results due to Halmos [8], van Winter [9, 10], refined by Kato [11], culminating in the
following.

Lemma (Halmos, Kato). Let P,Q be projections on subspaces of a Hilbert space H in
generic position, i.e.

PH ∩ QH = PH ∩ (11 − Q)H = (11 − P)H ∩ QH = (11 − P)H ∩ (11 − Q)H = {0}.
Then

(i) the linear manifold M := PQH ⊂ PH is dense in PH w.r.t. the Hilbert space topology
of H;

(ii) the projection P on QH is bijective, i.e. the inverse operator P −1 exists on M;
(iii) if ‖P −Q‖ = 1 then P −1 is a closed and unbounded operator on PH and domP −1 = M

is properly dense in PH.
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A proof can be found in [11]. The application of this lemma to the projections P+ and
Q± yields: the subspaces P+L

2(R,K, dE) and Q±L2(R,K, dE) are in generic position and
‖P+ − Q±‖ = 1. This means

Corollary. The assignment

H2
± � f → P+f ∈ M± := P+H2

±(R,K) (5)

is a bijection and M± ⊂ L2(R+,K, dE) are dense in L2(R+,K, dE).

In principle, to establish (5) the quotation of the result of van Winter is sufficient (it is
related to this special case). However, only the much more deeper result of Kato brings into
light the geometric roots of the matter.

4. Construction of scattering states with time asymmetric properties

Next we define the linear manifolds

F± := �−1M± ⊂ H. (6)

Then we obtain

Theorem. The evolution R � t → e−itH together with F± satisfy the following properties:

(i) The linear submanifolds F± ⊂ H are dense in H w.r.t. its Hilbert space topology.
(ii)

e−itH = �−1P+FT (t)F−1P+�, t ∈ R.

(iii) Let f± ∈ F± and g∓ := F−1P −1
+ �f± ∈ P∓L2(R,K, dx). Then the assignment

F± � f± ↔ g∓ ∈ P∓L2(R,K, dx)

is a bijection, i.e. the scattering states f± are bijectively represented by g∓ which are
incoming/outgoing vectors w.r.t. the shift evolution.

(iv) Correspondingly, the dense linear manifolds F± are incoming/outgoing manifolds w.r.t.
the (quantum-mechanical) evolution R � t → e−itH , i.e.

e−itHF+ ⊆ F+, t � 0,

e−itHF− ⊆ F−, t � 0.

Proof. (i) Obvious from the corollary. (ii) Obvious from (1) and (4). (iii) Obvious from the
corollary. (iv) Obvious from (2) and (3). �

Remark

(i) Note that F+ ∩ F− is still dense in H, i.e. there is a dense set of distinguished scattering
states which are simultaneously incoming and outgoing for the quantum evolution (see
[13]).

(ii) The construction of F± uses only an isometric operator realizing the unitary equivalence
of e−itH and e−itM+ , the wave operators are not required, as well as Schwartz space
arguments.
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(iii) Mathematically speaking, the rational content and meaning of time asymmetric quantum
mechanics is given by property (iv) of the theorem, i.e. there are dense linear manifolds
of scattering states such that the restriction of the quantum-mechanical evolution onto
these manifolds still acts as a semigroup for t � 0 or t � 0. However by this
restriction the spectral structure of the semigroup evolutions changes totally such that
there is no connection with the spectral structure of the Hamiltonian respectively the
quantum-mechanical evolution. The conclusion is that TAQM and the (spectral) theory
of resonances have to be sharply distinguished.

5. Resonances

The fact mentioned in (iii) of the remark, i.e. that the spectral structure of the semigroups

R∓ � t → e−itH �F± (7)

and the spectral structure of the quantum evolution are completely different influences strongly
the theory of the resonances. Strictly speaking, the restriction to the semigroups prevents an
approach to establish the spectral properties of the resonances in dependence of the selfadjoint
operator H. In the following it is pointed out that the semigroups cannot contribute to a
characterization of the resonances.

The manifoldsF± are even Hilbert spaces w.r.t. stronger norms suggested by the corollary:

F± � f± → ‖f±‖± := ‖P −1�f±‖, (8)

where ‖·‖ denotes the Hilbert norm of L2(R,K, dE). Note that P −1�f± ∈ H2
±(R,K), i.e. the

F±, considered as Hilbert spaces w.r.t. norm (8) are canonically isomorphic to H2
±(R,K). The

semigroups (7) are strongly continuous w.r.t. norm (8). The inspection of the spectral theory
of these semigroups yields the following result: the spectrum of the semigroup corresponding
to ± is the closure of its pure point spectrum C± (see e.g. [12]). This shows explicitly that
the spectral structure of these semigroups has changed dramatically as compared with that of
H. Already this fact indicates that they are unsuitable for a spectral characterization of the
resonances in terms of H.

If one takes no note of this indication and wants to use the TAQM-semigroups and their
Hilbert spaces as basic objects for this aim, one has to start with a Gelfand triplet, say in
the +-case

G̃+ ⊂ H ⊂ G̃×
+ , G̃+ ⊆ F+,

because (usually) resonances are nonreal and their spectral characterization as generalized
eigenvalues requires extension techniques of this type. For convenience we work in the
spectral representation, i.e.

G̃+ ⊂ L2(R+,K, dE) ⊂ G̃×
+ , G̃+ ⊆ M+, (9)

where G̃+ is still invariant w.r.t. the semigroup R+ � t → eitM+ . According to the corollary
this ansatz is equivalent with

G+ ⊂ H2
+(R,K) ⊂ G×

+ , G+ ⊆ H2
+(R,K), (10)

where G+ is still invariant w.r.t. the semigroup R+ � t → eitM , like H2
+(R,K) itself. Then an

extension of e−itM w.r.t. triplet (10) is given by (e−itM)×, defined by

〈g+|(e−itM)×g×
+ 〉 := 〈eitMg+|g×

+ 〉, g+ ∈ G+, g
×
+ ∈ G×

+ .

Now the Hardy functions f ∈ H2
+(R,K) are special continuous antilinear forms on G+ and

one has in this case

〈eitMg+|f 〉 = (eitMg+, f ) = (g+, e−itMf ) = (g+,Q+e−itMQ+f ), g+ ∈ G+. (11)
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In other words, for f ∈ H2
+(R,K) the ‘extension’ of e−itM�H2

+, t � 0 (note that these operators
do not form a semigroup w.r.t. t ∈ R+) is nothing else than the semigroup

R+ � t → Q+e−itM�H2
+(R,K), (12)

which is the adjoint semigroup of R+ � t → eitM�H2
+(R,K). The spectral theory of this

semigroup is well known. Its spectrum is the closure of its eigenvalue spectrum which
coincides with the lower half-plane C−. The eigenspace corresponding to ζ ∈ C− is given by
the subspace of all vectors

eζ (E) := k

E − ζ
, k ∈ K, (13)

(see e.g. [12]). That is, already if one chooses G+ := H2
+(R,K), all points of the lower

half-plane are ‘generalized’ eigenvalues with eigenspace (13) and it is not hard to see that by
enlarging the set of continuous antilinear forms by the choice of a smaller Gelfand space G+

(e.g. by the requirement that the elements of G+ are Schwartz space functions) the manifold of
‘generalized’ eigenvectors w.r.t. an eigenvalue ζ ∈ C− cannot be enlarged.

The conclusion is that the Gelfand triplet approach finally leads to the spectral theory of
(12), which is in [12] called the characteristic semigroup, and that H2

+(R,K) itself is sufficient
to determine all relevant ‘generalized’ eigenvalues and eigenvectors. In other words: this
approach applied to the TAQM-semigroups is unsuitable to obtain a characterization of the
resonances of the quantum evolution because all points of the lower half-plane (in the +-
case) appear as eigenvalues such that the resonances cannot be distinguished by this method.
Therefore a spectral characterization of the resonances requires an inspection of the spectral
theory of the Hamiltonian H and an ansatz with Gelfand triplets for H itself. (Note that the
defining property of the resonances to be poles of the scattering matrix does not relate this
concept to a single Hamiltonian H but to the vast class of all H which have the same scattering
operator, see Wollenberg’s theorem [5].)

For central-symmetric potentials with compact support and l = 0 this program is pointed
out and a solution is presented in [13], for the finite-dimensional Friedrichs model on the
half-line in [14–16].

On the other hand already the defining property of the resonances implies relations to the
distinguished TAQM in/out-manifolds related to H0. Without restriction of generality these
manifolds can be assumed to be M±, this means that H0 is identified with M+. A relation of
this type reads∫ 0

−∞
(f+(λ), S(λ)g−(λ))Kdλ + (f+, Sg−) = −2π i

∑
ζ

(f+(ζ ), Sζ g−(ζ ))K, (14)

where f+ ∈ M+, g− ∈ M−, E → S(E) is holomorphic on R+ and it is analytically
continuable into the complex plane. ζ runs through all poles of S(·) in the lower half-
plane and Sζ denotes the residuum of S(·) at the pole ζ . This relation is a simple application of
the residual calculus and can be proved if S(·) satisfies suitable conditions at infinity and λ = 0
and if there are no resonances on R−. The term

∫ 0
−∞(f+(λ), S(λ)g−(λ))Kdλ is sometimes

called the ‘background integral’ (see e.g. [1]). Relations of type (14) and other similar relations
are presented in [13] for the model considered there.
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